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Consider discrete It-approximations to a data function f, on some finite set of
points X, by functions from a linear space of dimension m < CJJ. It is known that
there always exists a best approximation which interpolates / on a subset of m
points of X. This does not generally hold for the "continuous" Lt-approximation
on an interval, as we show by means of an example. We investigate the invariance
of the interpolation points of the discrete It-approximation under a change in the
approximated function. Conditions are given, under which the interpolant to a
function g on a set of "best It points" of a function/is a best Irapproximant to g.
Additional results are then obtained for the particular case of spline It-approxi­
mation.

I. INTRODUCTION

One of the properties of the discrete linear II-approximation to a function!
over some finite set of points X, is that there always exists a best approxima­
tion which could be determined as an interpolant to!on some subset of X.

Specifically, let X = {XI, ... , x n } and let W be a set of associated positive
weights, W = {WI'"'' wn}. Let the functions ¢I '00" ¢m be linearly independent
over X, m < n, and consider approximations to f(x) of the form

v(cx; x) := L Oi,¢;(X);
'~l

(1.1)

The Irapproximation problem is to find an Oi = (X* which solves the mini­
mization problem

Let

(1.2)

Z(g; (3) := {x E X I v(f3; x) = g(x)};

83
13 = (131 ,... , 13m)' (1.3)
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The following theorem may be found in Barrodale and Roberts [2]. It
can also be obtained constructively from the dual linear programming
formulation of (1.2) (see, e.g., [6D.

THEOREM 1.1 [2]. For a given data function/, there exists a best Icapproxi­
mation v(Ct*; .) to in on X. such that there exist m points in X

which satisfy

and

~1 , ... , ~rn E Z(f; Ct*) (1.4)

(1.5)

The subset of interpolation points ~I ,... , ~'" depends generally on f and X
and is not usually known in advance. Our purpose in this note is to determine
criteria for the interpolation points to remain invariant under a change in f;
i.e., to define a class of functions for which the interpolation points ~I ,... , ~'"

are "II-best". Thus, once the points are known for a specific class, (say, by
carrying out the linear programming computation of (1.2) for one function in
the class) the problem of II-approximation for other functions in that class is
reduced to that of interpolation of order m.

Our general theorem appears in Section 2. It gives conditions for the
case where a set of "II-best" interpolation points for one function is also
"II-best" for another function. In Section 3 we recall corresponding results
for the "continuous" Lcapproximation on an interval I. It is well known that
in the polynomial case, rPi(X) := xi-I, i = 1,... , m, interpolation at the zeros
of the mth order Chebyshev polynomial of the second kind (transformed
from [-1, 1] to I) will provide the unique best LI-approximation for any
function in e'" whose mth derivative does not vanish on the interval. This
was generalized in Micchelli [4] to weak Chebyshev systems. By comparison,
in the corresponding II-approximation there is no uniqueness and the Hobby-­
Rice theorem [3] does not hold; on the other hand, Theorem 1.1 does not
extend to the continuous LI-approximation in such generality. An example is
given to prove this last point.

[n Section 4 we consider the case where XC J and arrive at a discrete
analog to Micchelli's result. Finally, we treat the case of spline h-approxi­
mation and show, that the unique set of "II-best" interpolation points,
obtained from the II-approximation of a certain perfect spline, provide a best
Icapproximation for every function in the corresponding convexity cone.

The conditions given in Section 2 for the invariance of the "best 11 points"
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under a change in the approximated function may at times prove to be quite
restrictive, especially when X represents a discretization of some connected
domain in Rk, k > 1. Nevertheless, it has been noted in practical calculations
with cross products of B-splines that the interpolation points tl ,..., t", ,
determined by best II-approximation to a function/, were also "good," though
not "best", for other functions tested which did not satisfy the invariance
conditions. That is, for another function g, the error when using tl ,..., t", to
determine the approximant by interpolation often was of the same order of
magnitude as the error obtained for the best Icapproximation to g. This
observation has instigated motivation to use the II-points as collocation
points in the numerical solution of partial differential equations [8, I].

2. INVARIANCE OF IrINTERPOLATION POINTS

Before stating and proving our theorem we recall the following character­
ization theorem for best Icapproximations (see, e.g., [7]). With the notation

sgn {x} := I x>O
~ 0 x=o

-I x<O

we have

THEOREM 2.1. v(n:*;') is a best II-approximation to fO if and only if

I f w;v(n:; x;) sgn{v(n:*; x;) - f(x;)} I ~. I .. W k I v(n:; xk)1
)~I xkEZ(f.a )

for all n: E R"'. (2.2)

Our theorem follows.

THEOREM 2.2. Let f and g be two given data functions on X. Let n:* and
tl '00" t", be so constructed that v(n:*; .) is a best II-approximation to f on X
and (1.4) and (1.5) hold. Let 0: be determined so that v(0:; .) interpolates g(.) at

tl ,..., tm .If
(i) Z(g; 0:):J Z(f; n:*)

(ii) 3a E {-I, I} such that for any j, 1 ~.i ~ n, either

ld t [
tl ,..., cP", ,g]1 ld t [cP1 ,... , cPm 'f]!sgn e = a sgn e ,
tl , ... , tm, x j ~ ~1 "'0' grn , Xj
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det [~I ,"', ¢rn, ~] .,~ 0,
S I , ... , ~1lI ' ·""(,i

then v(&; ') is a best II-approximation to g,

Proof The characterization (2.2) holds for fwith rx*. We want to show
that it holds for g with &.

Define a function j on X by

Then, by assumption (i),

Xi E Z(g; &)

otherwise.
(2.3)

Z(/; rx*) = Z(g; a).

We claim that (2.2) holds with J replacing f To show this we need consider
only x/s which satisfy

Xl E Z(g; &) - Z(f; rx*).

For each such Xi and any rx E Rm, the term Wj I u(o:; Xj)1 is added to the
right-hand side of (2.2) and the term WiV(rx; Xi) or - WjV(rx; Xj) is eliminated
from the left-hand sum. Thus, since the inequality (2.2) holds for f, it must
also hold for /:

If WjV(rx; Xi) sgn{v(rx*; Xj) - .I(X;)}I ~. ~. H'" I V(ex; X.,) 1 for allrx E RU'.
J~I '"kEZ1o,li) (2.4)

Now, v(&; .) interpolates gO at exactly the same points as v(rx*; .) inter­
polates .10, and

sgn ldet [¢I , , ¢'" ,.f)I= a sgn Idet [¢I , , ¢m , g) I ,
t fl , , ~'!n , Xj ~;1 , , fm ,Xj ~

But the errors of interpolation can be written as

j = 1,... ,11.

(2.5)

-det [¢I , , ¢"', g]
( ) () gl , , fm' Xj

v &; Xj - g Xj = -d-e-t-[¢.;-'I'-'."-"-'¢.-,,=,]---':""-
~1 , , ~'"

-det [¢I , , ¢'" , J]
v(ex* ; Xj) - .f(x;) = --_.::..~1;-..':.-"_'':'-'::"~"'e::.'-,-'_X.:-;-

det [¢I , , ¢"']
~I , , ~'"

I ~j~n,
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The determinant in the two denominators is the same (and is nonzero), and
(2.5) now yields that

sgn{v(cX; Xi) - g(xJ} = u sgn{v(~*; Xi) ~j(Xj)J,

Thus we obtain, inserting (2.6) into (2.4),

j= I, ... ,n. (2.6)

If H'iL'(~; Xi) sgn{v(cX; Xi) - g(Xi)}! ~ L._ Il'k I v(CY; Xk)[ for all CY E Rm
),=1 XkEZ(y.CX)

and by Theorem 2.1, this proves the desired conclusion. Q.E.D.

3. THE CONTINUOUS LI-ApPROXIMATION

For purpose of comparison we now consider the case for Lrapproximation
on an interval I: = [0, I], say. Let epI ,... , epm and f be continuous on 1. With
a uniform weight function, the problem is to find an CY = CY* which solves
the minimization problem

mlnI( I v(CY; x) - j(x)[ dxl = f I v(c\*; x) - j(x) I dx. (3.1)

A characterization for cy* is given by (see, e.g., [7])

Irv(~; x) sgn{v(a*; x) - j(x)} dx I~ f I v(CY; x)\ dx
o Z(f;o*)

for all CY E Rrn
(3.2)

with Z(f; ~*) defined as in (1.3), I replacing X.
A general theorem, relevant here, is due to Hobby and Rice [3]:

THEOREM 3.1 [3]. For any set offunctions epI ,..., 4>rn , linearly independent
in LI[O, 1], there exist points

such that

°= go < g1 < ... < gr < gr+1 = I,

r+I <;
L (-I)i r epi(X) dx = 0,
i~1 "<;-1

r ~111,

i = 1,... ,111. (3.3)

Now, if epl ,... , epm and f are such that (i) r = m, (ii) interpolation to
f on {gi}:1 is possible, and (iii) the error of interpolation changes sign on
{gi}:1 and only there, then by (3.2) we have a best Lrapproximation. Such a
result is proved in [4] for weak Chebyshev systems, and we state it below.
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Recall that the set of linearly independent continuous functions {cPl ,... , cP",)
is called a weak Chebyshev system on (0, I) provided that for any 0 < Xl

X1/I < I,

det [~: ::::: ~:::J o. (3.4)

The subspace S =, span{ cPl ,... , cPm} is then called a weak Chebyshev subspace
of qo, 1], dim S = m. If the determinants in (3.4) are all strictly positive,
then the set is called a Chebyshev system. Also, denote by K c the class of all
continuous functions in the convexity cone of {cPl ,... , cPn,}, i.e., the class of
all continuous functionsffor which, either with h :c~for with h:= -f,

det [cPl ,... , cP", , 11]
Xl"'" X m , X m +1

for all 0 < Xl < ... < X mel < l. Finally, let

° (3.5)

for every 0 < Xl < ... < X m < I and let d[x l , ••. , xu.] be the dimension of the
smallest linear subspace of R'" containing F[x l "", x",].

THEOREM 3.2 [4]. Suppose S ~~ span{cPl ,... , cPm} is a weak Chebyshel"
subspace of dimension m of qo, I], and for every 0 < Xl < ... < x'" < I,
d[xl ,... , x",] = m. Then every fE K c has a unique best Lcapproximation by
elements ofS. Furthermore, we have r =~ m in (3.3) and the best Ll-approxima­
tion v(cx*; .) to fC) is determined by the condition that it interpolatesfat gl ,... ,

grn'
Note that gl ,... , g", do not depend on f, When passing to the discrete

lcapproximation we do not have uniqueness, and the corresponding version
of (3.3) does not hold any more (i.e., the left-hand side of (2.2) cannot
usually be made equal to 0). Nevertheless we obtain, in the next section,
corresponding results about invariance of the interpolation points, using
Theorem 2.2. On the other hand, we show now by means of an example,
that Theorem 1. I cannot be stated in such generality for the continuous
Ll-approximation.

EXAMPLE. Let cPi(X):= X2i , i = I, ... ,m, andf(x):= X2",!1 be defined on
I: = [- I, I]. Then cPl ,... , cP'" are linearly independent over I. It is clearly
seen from (3.2) that a best Ll-approximation is provided here by cx* ==0 0.
Now, let {3 = ({31 ,.. " {3",) provide another best Ll-approximation to f, Then,
for each X E I (see [7]),

[v({3; x) - f(x)][v(cx*; x) - f(x)] ?' O.
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Therefore, we must have
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v(f3; x) ~f(x)

v(f3; x) ~ f(x)

X E (0, I],

XE[-I,O).
(3.6)

Assume, without loss of generality, that 1'(f3; x) ~ °for x in some neigh­
borhood of °(note that v(f3; x) is symmetric around x = 0). Then, if f3 # 0,
we get that there exists 7) > 0 such that

v(f3; x) > 0 X E (-7), 7) - {O}.

But, by the choice of fwe then have that there exists 8 > °such that

v(f3; x) > f(x) X E (--8,8) - {O}.

This contradicts (3.6); hence a* == °provides the unique best L1-approxima­
tion here. Now, v(a*; .) ~ °interpolates fO at only one point, gl = 0, for
any positive integer m.

4. DISCRETE IcApPROXIMATION IN ONE DIMENSION

We restrict ourselves here to X C I and use Theorem 2.2 to obtain results
analoguous to part of Theorem 3.2 for the discrete II-approximation.

Let

We say that the set {1>1 ,... , 1>m} forms a weak Chebyshev system on X if
rank (A) = m and every m by m submatrix of A has a nonnegative deter­
minant. If all m by m determinants are strictly positive then we have a
Chebyshev system. A function f, defined on X, is said to belong to the con­
vexity cone of {r/>l ,... , 1>m} if either for h := f or for h := - f we have that for
all Xl < ... < Xm+l , {Xi}~jl C X,

det [~~ ::::: ~: : x
1l1
J ;~ 0.

We have the following consequence of Theorem 2.2.

(4.2)

COROLLARY 4.1. Let f and g both belong to the convexity cone of the set of
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m linearly independent functions cPl ,... , cPm on X. With C\'* and ii' defined as i'l
Theorem 2.2, assume

Z( g; ii') :J Z(f; l<*). (4.3)

Then viii'; .) is a best leapproximation to g.

Proof Condition (i) of Theorem 2.2 is assumed here. Condition (ii)
follows from the definition of the convexity cone. Thus Theorem 2.2 is
applicable and the conclusion follows. Q.E.D.

Note that we do not assume above that the functions cPl ,... , cPm form a
weak Chebyshev system; only that they are linearly independent on X.

From Corollary 4.1 it is clear that if we want to find a set of points {~1 ,... ,
fm} C X which would be invariant for all functions in the convexity cone on
X, we have to find a function f in the convexity cone with a minimal set of
interpolation points (which always includes tl ,... , t",).lf {cPl ,... , cPm ,f} is a
Chebyshev system on X, thenfis such a desired function, since then

But even the requirement that cPl ,... , cPm form a weak Chebyshev system on
X does not guarantee the existence of such an f In particular, for spline
functions of order k:

"-(x), Xi-I,' I k''Pi ~.= = ,... , , cPk+'(X) := (x ~ TJ~-l i = I,... , v (4.4)

with m = k + v and 0 < Tl ... < T, < I, where (x)+- :=c ~(x i x I) and
XC 1:= [0, 1), there is no functionfsuch that {cPl ,... , cPm ,j} is a Chebyshev
system if X is dense enough in 1. Nevertheless we have for splines

COROLLARY 4.2. Let f be the perfect jpline

f(x) :
v

x" +- 2 '\ (- I )i (x -- T)':L ZT

i=l

(4.5)

and let ~1 , ••. , ~m be obtained as interpolation points of the best discrete Ie
approximation to f by spline functions defined in (4.4), which satisfies (1.4) and
(l.5). Then for any function in the convexity cone of {cPl ,... , cPm} on X, inter­
polation on tl ,... , tm provides a best spline II-approximation.

Proof Since pk> changes sign exactly at T1 , ... , Tv we have that f belongs
to the convexity cone of {cPl ,... , cPm} defined by (4.4) (see [4]). Also, since
there cannot be more than m interpolation points to this f by any spline
v(C\'; x) = L:;~1 C\'icPi(X) [5], we have that

Z(f; C\'*) = {tl ,... , trn} C Z(g; ex)
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for any g in the convexity cone, and corresponding eX which is determined by
interpolation on ~, ,... , ~m' Hence Corollary 4.1 applies here. Q.E.D.
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